
151 Reprint Series
IS1/RS-89-23 1
February 1989

00

of Southern
0 Califobrnia

Pedro Szekely

1% Structuring Programs to Support
Intelligent Interfaces

DTIC
' APR 05 198q*

I K- ? 2.'I% rl e

INFORMATION
SCIENCES 213/822-1511

INSTITUTE'l fonaQ226
466Amroll), Way/Marina del R ey/Calfrna02-69

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION I AVAILABILITY OF REPORT

2b. DECLASSIFICATION IDOWNGRADING SCHEDULE This document is approved for public release;

distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ISI/RS-89-231

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

USC/Information Sciences Institute (if applicable)

6c ADDRESS (Oty, State, and ZIP Code) 7b. ADDRESS (Ciy, State, and ZIP Code)

4676 Admiralty Way
Marina del Rey, CA 90292-6695

8.. NAME OF FUNDING /SPONSORING b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMFNT 'flFNTIFICATION NUMBER
ORGANIZATION DARPA (if appicable) F33615-87-C-1499 F33600-87-C-7047

Air Force Logistics Command MDA903-86-C-0178

8c. ADDRESS (City, State, and ZIP Code' 10. SOURCE OF FUNDING NUMBERS
DARPA Air Force Logistics Command PROGRAM PROJECT TASK WORK UNIT
1400 Wilson Boulevard Wright-Patterson Air Force Base ELEMENT NO. NO. NO. CCESSION NO.
Arlington, VA 22209 Ohio 45433-5320

11. TITLE (Include Security Classification)

Structuring Programs to Support Intelligent Interfaces (Unclassified)

12. PERSONAL AUTHOR(S) Szekely, Pedro

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Research Report FROM ,._,. TO 1989, February 27

16. SUPPLEMENTARY NOTATION
This report is a revised version of a paper that appeared in Architectures for Intelligent Interfaces:
Elements and Prototypes, Monterey, California, March 1988.

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP 1

09 02 intelligent interfaces, UIMS, user interface management system)

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The ability to connect user interface building blocks with a wide variety of application programs is crucial
in the construction of intelligent interfaces. This paper presents a language to specify the communication
between building blocks and application programs, with two important features: First, the language is ab-
stract enough to isolate the application program from the details of particular interface styles. Second, the
language is rich enough to support the communication of the information needed for the low-level aspects
of the user interface. The paper also describes a UIMSbased on this language, and discusses how the
language supports tools that can reason about the building blocks provided by the UIMS.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
M UNCLASSIFIED/UNLIMITED IM SAME AS RPT. 0 DTIC USERS Unclassified

22a. NAME OF RESPONSIBIE INDV!VDUAL 22b. TELEPHONE (Include Area Code)vLL. ir- r. iYMBOL
Victor Brown Sheila Coyizo 213/822-1511 1

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsole*e. Unclassified

IS1 Reprint Series
ISI/RS-89-231

February 1989

iUniversiiy ~of Southern
California

Pedro Szekely

,.X...- -.. - Structuring Programs to Support
Intelligent Interfaces

1/VF0RMA T[O ,V

SCIENCES 238211
INSTITUTE =

f,4676 AdniMraity Way/Marina del Rey/California Q0292-6695

The initial research was supported b the Defense Advanced Research Projts Agency, ARPA Order No. 4976, Amendment 20. under Contract No.F336'5-87-C-1499, monitore by the Zvionics Laboratory, Air Force WriQht Aeronautical Laboratories, Aeronautical Systems O,tision (AFSC). Wright-Patter-
sor -B. Further work has been supported in part by DARPA under Contract No. MOAg03-86-C-0178 and in part by the Air For,- Lostii-s Command underContract No. F33600-87-C-7047. View, and conclusions contained in this report are the author's and should not be interpreted as represonting the officialpolicies, either expressed or implied, of DARPA. the Air Force ! ogistics Command, the U S Government, or any person or agency connected with them

1 Introduction

Many user interface management systems (UIMSs) have a library of interface building

blocks that can be used to assemble the interface for a program [Tanner83]. An

intelligent UIMS has a reasoning component that determines how to use this library

based on a model of the program, the user and interface design. For instance, the

Integrated Interfaces system [Arens88] uses a model of the objects and operations in

the program, and a model of interface building blocks such as icons, menus, and maps.

The reasoning component uses a set of rules to choose what interface building blocks

to use, and then connects them with the objects and operations of the application.

Connecting the interface building blocks with different application requires that

the building blocks use a standard language to communicate with the application

objects and operations. Otherwise, it is necessary to write a program to translate

between the languages used by the building blocks and the application, making it

impossible to automatically connect building blocks and applications.

Suppose, for instance, that applications are programmed using an object-oriented

programming language. The application objects would be defined as classes, and

the application operations would be defined as methods for those classes. In such

an environment, the standard language for user interface/application communication
would consist of a list of methods that each application object must provide. If

each application object provides these methods, then the interface building blocks

could communicate with any application object since the building blocks would use

only these methods to communicate with the application. Such a standard language

would make the building blocks plug-compatible with a large number of application

programs.

Defining such a standard language is difficult because the language must support

a wide variety of interface styles and a wide variety of applications programs. This

generality requirement generates two conflicting gua's:

9 The language must define the communication with the application in abstract

terms, without referring to any particular interface style. Otherwise, the appli-

cation will not be independent of interface style, and hence cannot support a

variety of interfaces.

2

* The language must support the communication of the information needed for

each interface style, including the information needed to support application-

dependent feedback (semantic feedback). Since different interaction styles pro-

vide different kinds of feedback (e.g. rubberbanding. gravity, highlighting), it

appears that the language must be tuned to particular interface styles.

This paper describes a language that achieves a good compromise between these two

contlicting goals. To achieve the generality goal, the language is based on an ex-

tension of the language new of programs 'Foley82, MoranS1, Newman79], a general

model of interactive programs. The extensions involve mainly enriching the descrip-

tion of the semantics of a program. To ensure that the language supports a wide

variety of interface styles, the language primitives were tested with a large number

of interaction styles. and refined to make sure that the appropriate information can

be communicated. The resulting language primitives allow the communication of the

application-specific information needed in many interface styles, but the information

is described at a high enough level of abstraction so that the details of the interface

styles remain hidden.

The paper is organized as follows. Section 2 presents the language view of pro-

grams. Section 3 introduces the primitives of the proposed language, and section 4

shows how these primitives can explain the behavior of the interface to a chess pro-

gram. Section 5 describes Nephew. a UIMS based on the proposed communication

language, and shows how the interface to the chess program is implemented with

Nephew. Finally, section 6 describes how the language can be used in the reasoning

component of intelligent interfaces.

2 The Language View of Programs

Communicat ion is "t he exchange of meanings bet ween individ utals through a common

system of symbols" [Encyclopac7-1]. To communicate a meaning. call,'d a coac-pt iIn

this palicr, the sender must encode the concept into a sequence of vmlols \with a

concrete physical representation th t ca !"w b' '.r-''' V " lle rec,eive'. " , k,...,,,

must decode the symb1ols it perceives. and extract the corresponding concept.

A human and a program communicale concepts by encoding them as changes in

the state of input and ont put devies at t ached to the com)I((r. Isers com 1ni(a I

3/Structuring Programs to Support Intelligent Interfaces

concepts to programs by manipulating the input devices. Programs monitor the state

of the devices to recover the concepts, process them, and produce new concepts, which

are transmitted to the user by encoding them in the state of the output devices.

The primitives of the proposed language were identified by classifying the concepts

that users and programs communicate via graphical user interfaces. Each concept cat-

egory corresponds to a primitive of the language. Put in object-oriented terms, each

concept category corresponds to a method that computes the information embodied

in the concept.

The classification of the concepts that users and programs communicate, called

communication concepts, is based on the language view of programs [Foley82, Moran8l,

Newrian79]. According to the language view, the language to communicate with a

program has four levels called the conceptual, semantic, syntactic and lexical levels.

The conceptual level describes the tasks the user is able to accomplish using the

program. Tasks are specified by decomposing them into subtasks, and subtasks are

decomposed further until they can be accomplished using a single operation provided

by the program. The semantic level describes these operations and the objects that

they operate on. The syntactic and lexical levels describe how the user accesses the

objects and operations using the input and output devices.

These levels are consistent with the definition of communication given at the

beginning of this section. The communication concepts are the meanings encoded

in the lexical and syntactical levels. The user transmits them in order to use the

facilities provided by the program, i.e. the objects and operations.

Even though the division into levels appears intuitive, no precise notation for

describing the levels of an application program exists. Moran's CLG [MoranglI is

perhaps the most complete notation, but it is not precise enough to be executable,

and many aspects of graphics-based interfaces cannot be expressed in it. Most of

the work on notations for describing programs according to the language model has For

concentrated on the syntactic and lexical levels. BNF, transition networks, and event

based systems are the most popular methods [Green86]. 0

The specification of the semantic level usually consists of a list of type and proce-

dure declarations like those used in MIKE [OlsenS6] and the ones used in Foley's et.

al. user interface design environment [Foley88]. The idea behind such specifications .3

is that the types specify the objects that the application provides, and the procedures

4

specify actions that can be performed on those objects.

This kind of specification does not capture many attributes of a program that are

conveyed to the user via graphical user interfaces. For instance, the user interface for

a chess progiam cuuld ighlight the pieces that can be legally moved at any given

moment. To highlight the pieces the user interface has to somehow find out which

pieces can be moved. Some supporters of the type/procedure method of specifica-

tion would say that one could simply include in the specification a procedure that

computes the relevant information. This is a poor solution because such a specifica-

tion does not record the purpose of the procedure, which is to test whether a given

piece is a legal parameter for the move operation. This specification would make it

impossible to construct a generic user interface building block that highlights objects

that are correct parameters to an operation. The building block would not know

which procedure to call, and even if it knew, it would not know what parameters to

provide and in what order. The specification language should capture more about

the meaning of the types and procedures. The language should allow one to express

that the "test-chess-piece" procedure tests whether an object is a legal candidate to

become an operation input. Any interface building block that needs this information

can get it by using the appropriate language construct.

Some UINSs (Hayes85, Smith84] specify the semantics of programs using for-

malisms that specify more than types and procedures., and capture the information

needed to support the generation of menu-based interfaces. Unfortunately, tbey do

not capture some of the aspects of the semantics of a program needed to support

highly interactive graphical user interfaces.

The difficulties with the specification of the levels of the language model might

suggest that the model is inappropriate [Kamran83]. This paper shows that many

of the difficulties of the language model can be overcome by enriching the semantic

level de~cript ion.

Finally, the classification of the concepts that users and programs communicate

is also based on an analvsis of the user interface of man\, Macintosh programs (e.g.

MacDraw. Excei and Finder). The communication concepts can explain the btehavior

of the interface features of these programs.

The communication concepts introduced in the next section capture the distinc-

tions in semantics that are relevant to the construction of graphical user interfaces.

5/Structuring Programs to Support Intelligent Interfaces

Each class of communication concept captures a different semantic distinction.

3 Communication Concepts

The communication concepts are divided into input and output communication con-

cepts. The input communication concepts are the meanings encoded in the gestures

produced with the input devices (syntactic and lexical levels). These concepts express

what the user wants to do with the objects and operations (semantic level).

The set of concepts that a user might want to express about the objects and

operations of a program are open ended. The power of the set of communication

concepts presented below is that the set is small, yet it is rich enough to explain the

behavior of a large variety of graphical user interfaces. The set of interfaces includes

mouse based systems such as the Macintosh interface. The communication concepts

can explain the effect of every input event, every mouse movement, for a large variety

of interfaces. Section 4 illustrates this using a chess program.

The input communication concepts are used by the user to communicate to a

program:

Activate operation: expresses the user's intention to invoke an operation. After acti-

vation the user performs other activities, which are described below, and then

executes the operation.

Execute operation: requests that an operation be executed. If the operation is ready

to be executed (e.g. all required inputs have been specified), the appropriate

procedure is called. Otherwise, a communication concept is transmitted to tell

the user about the error.

Bind input of operation to value: specifies a value for an input.

Preview operation: computes an approximation of the effects that executing the op-

eration would have, given the current setting of the input, values. The rubber-

banding effect in many graphical operations is an instance of the use of the

preview concept.

Abort operation: requests that the execution or activation of an operation be termi-

nated.

6

These communication concepts can be qualified with the qualifiers plan and not-plan.

Where as the bind input to value concept specifies the value of an input to an operation,

the plan bind input to value concept tells the program that the user has entered a state

in which he or she can specify the given input. For instance, moving the mouse over

a check box icon can be interpreted as a plan to set a value. Clicking the mouse will

set the value, but moving the mouse away from the check box without clicking will

not set the value, and can be interpreted as a not-plan bind input concept. Section 4

illustrates how these qualifiers are used in the interface for a chess program.

The output communication concepts are used by the program to communicate to

the user:

Contents: the state of an object.

Changes: a change in the contents of an object.

The following set of output communication concepts refers only to operations:

Alternatives: the set of values from which an input for an operation must be chosen.

Correct input of operation: the value true if the input of an operation is bound to a

valid value; otherwise, a description of why the binding is incorrect.

Using object as input of operation: a concept that specifies that a given object is be-

ing used as an input value for an operation.

More details about the meaning of the communication concepts, and the role they

play in the communication of a user with a program can be found in the author's

thesis [Szekely88].

These communication concepts are the categories in a classification. To precisely

describe a program it is often necessary to define specializations of some of these

concepts. For instance, the changes communication concept reports that an object

has changed, but does not specify how. A specialization of the changes concept should

be used when it is desired to specify' how an object changes.

For example, a chess program could transmit the PIE'E cl~mpx.u , communnication

concept when PIECE is moved from one location to another, or w!,hen PIECE is taken.

The changes communication concept could be specialized for the chess program into,

say, changes-moved and changes-taken to distinguish between the two kird, of chanLe,.

7/Structuring Programs to Support Intelligent Interfaces

These two concepts would allow the chess program to transmit more accurate infor-

mat ion about changes.

The most important point about the communication concepts is that they can

express the communication between a user and a program in abstract terms. without

reference to part icular interaction techniques. The interpretat ion of every input event.

and all display updates can)e viewed as the encoding of one of the communication

concepts.

4 An Example

This section illustrates how the communical ion concepts can explain the input/output

behavior of a program. The figures that follow show snapshots of a chess progran

display while the user drags a piece using the mouse. The interface behaves as follows:

when the user presses the mouse button over a piece that can be moved, the piece is

highlighted, then an outline of thf- piece follows the r .. e. The user can then drag the

piece to its destination and release the mouse button to drop the piece there. While

dragging, the location under the mouse highlights when it is a legal destination for

the piece.

The following screen snapshot shows the chess board after the user moves the

mouse over the knight, but has not pressed the mouse button.

The following snapshots consist of two parts. The first part describes an input

evei:t and its related communication concepts. and the second one shows the new

screen state after the communication concepts are processed. In what follows the

crent describes the input event receixed by the program, the input CC is the input

communication concept encoded in the event, the output CC is the output communi-

cation concept produce(] as a result of processing the input CC, and the display is a

description of how the program displays the output CC.

8

Ev'ent: the user presses the mouse button over thie knight.

Input CC bind the PIECE input of the MOVE operation to PIECE-UNDER-MOUSE.

Output CC: the PIECE input of the MOV'E operation is correct.

D1*1%p~ay: highlight the piece.

Erfrnt: user moves the mouse to adjacent square.

Input CC- plan to bind the LOCATrION input of the MOVE operation

to LOCATION -U NDER-MOUSE.

Output CC: the LOCATION Input of the thto%'F operation is incorrect.

Display nil, only correct locations are highlighted.

The programn tells thle user that if the piece is dropped in that location It is an

illegal move. Should the user release the mouse button at this point the program

would hind the location Input to an incorrect value, beep to present the errot . and

de- act ivat e thle operation.

Eci:user moves the mouse to adjacent square.

lup ii('plan to bind the LOCA-rioN input of the \10vv operation

to LOCATION -U'NDER -MOVSF.

Output CC. the LOCATION input of the MOVE operation is incorrect.

Display: nil. only correct loca tions are high1lighited.

9/Structuring Programs to Support Intelligent Interfaces

Evcnt: user moves the mouse to adjacent square.

Input CC: plan to bind the LOCATION input of the MOVE operation

to LOCATION-UNDER-MOUSE.

Output CC: the LOCATION input of the MOVE operation is correct.

Display: highlight the location.

Event: user releases the mouse button.

Input CC: bind the LOCATION input of the MOVE operation to LOCATION-UNDER-MOUSE,

execute the MOVE operation.

Output CC: changed the PIECE input of the MOVE operation.

Display: Erase the piece from the old location and display it at the new location.

/////

,//

Should the user move the mouse to an adjacent, location without releasing the

mouse button, the program would interpret the event as a not-plan to bind, and

would remove the highlighting from the location.

1 1

qut-oman Uutpesner

pieee-presenter
Qsave-co m mand -" {save-presenter I

~piece-presenter

c r board-presenterchess-presenter

Figure 1: The architecture of the chess program.

Note that even the low level details of the interface such as displaying feedback in

response to individual mouse movements can be expressed in terms of the communi-

cation concepts.

5 Nephew: A UIMS Based on Communication Concepts

The communication concepts described above serve, not only to explain the behavior

of graphical user interfaces. but also as the fou,,dation of a UIMS. This section de-

scribes Nephew. a UIMS 1), .-d on communication concepts [Szeke]yS8]. Nephew is

the successor to the CoUsIN [IIayesS.3] U1MS.

Figure 1 shows the architecture of a typical Nephew application, in this case a

chess program that behaves as described in section 1. The program consists of four

kinds of building blocks, called recognizers, cominna1d:,, i'reseni ,i-s. and the application

objects (not shown in the figure).

Recognizers. A recognizer is parser for a cornplet e input gesture such as a imous"e

1l/Structuring Programs to Support Intelligent Interfaces

click or a mouse drag. A recognizer produces communication concepts in re-

sponse to input events in the gesture, and sends the concepts to a command for

interpretation.

Commands. A command is a communication concept interpreter for one specific op-

eration. Each command receives communication concepts from recognizers and

responds to them producing output communication concepts, which it sends to

presenters to be displayed.

Presenters. A presenter displays communication concepts.

As shown in figure 1, an application implemented with Nephew typically consists of

many recognizers, commands and presenters. Quit-command and save-command are

commands for the quit and save operations provided by the chess program. They are

made accessible to the user by displaying them with the presentation produced by

quit-presenter and save-presenter presenters. The quit-recognizer and save-recognizer are

defined to activate their commands when they detect a click over their presentation.

For instance, if the user clicks the mouse over the quit-presenter, then quit-recognizer

sends an activate message to quit-command. Since the quit operations takes no pa-

rameters, quit-command responds to activate by sending itself an execute message,

thus initiating the execution of the quit operation. The move-recognizers and the

move-command implement the behavior discussed in section 4. Each piece presenter

has a move-recognizer to handle drag gestures that start at the piece. While dragging

a p;ece, move-recognizer sends to move-command the sequence of communication con-

cepts listed in section 4. The output communication concepts are displayed by each

piece-presenter and by board-presenter.

Nephew is implemented in Lisp on a Symbolics Lisp Machine using the Flavors

ob)ject--)riented programinig package. Nephew provides predefined building blocks

of each k ind. implemented as classes. and the job of the interface implementor is to

assendIh, these building blocks to construct a program. The following subsections

discuss the imlhmentati o in more detail.

12

Recognizers

A recognizer is a pars& for a complete input gesture such as a mouse click or a mouse

drag. Nephew implements recognizers as classes, one class for each kind of recognizer.

Recognizer-Basic implements the behavior common to all recognizers. This includes

methods to turn recognizers on and off, methods to connect recognizers to

presenters, and methods get the input events from a global event queue. The

response to the input events is implemented by the subclasses listed below.

Click-Recognizer implements the click gesture. The user interface implementor must

supply the communication concepts that the recognizer transmits when the click

starts and terminates.

Drag-Recognizer implements the drag gesture. The default Drag-Recognizer is pro-

grammed to drag an outline of its presenter while the gesture is in progress.

The implementor must provide the communication concepts that the recog-

nizer transmits when the drag gesture begins, each time the mouse moves, and

when the gesture terminates.

Dispatch-Recognizer implements the standard dispatch behavior to distribute events

to other recognizers. Instances of Dispatch-Recognizer are attached to presenters

with sub-presenters to dispatch events to the presenters attached to the sub-

presenters.

Window-Move-Mixin is a subclass of Drag-Recognizer that allows windows to be moved

by dragging them by their title bar.

For example, in the chess program implementation shown before in figure 1, the move-

recognizers are instances of Drag-Recognizer, and quit-recognizer and save-recognizer are

ins~ances of Click-Recognizer. Instances of Dispatch-Recognizer, not shown in the fig-

ure, are attached to board-presenter and chess-presenter to distribute the input events

to the other recognizers.

Commands

A command is a communication concept interpreter for one specific operation. Nephew

implements commands as classes, and implements input communication concepts as

13/Structuring Programs to Support Intelligent Interfaces

methods of command classes. The following are the methods that implement the

communication concepts:

execute: executes the procedure that implements the operation.

preview: invokes the procedure that implements the preview.

activate: makes the command active.

deactivate: makes the command inactive.

cancel: cancels the execution of an operation.

Newly defined command classes inherit default implementations for all of these meth-

ods. Implementors can override some of these methods to implement different inter-

face styles.

In addition, a command must provide the following methods for each input of

an operation. Nephew constructs default implementations for these methods from

the operation declarations, but the user interface implementor can override them to

provide non-standard behavior:

input: a command must provide a method called input corresponding to each opera-

tion input called input. These methods access the value of inputs or their plan

component. For instance, the move-command used in the chess program pro-

vides methods called piece and location, corresponding to the piece and location

parameters of the move operation.

set-input: likewise, a command must provide a method called set-input corresponding

to each operation input, called input. These methods set the value of inputs or

their plan component. For instance, move-command provides methods set-piece

and set-location to set the command's piece and location inputs.

test-input: likewise, a coml and must provide a method called test-input to test,

whether a value is a legal input.

alternatives-input: generates the set of valid inputs for input.

For instance, the move-command used in the chess program overrides the test-piece and

test-location metliods with predicates that define the rules of chess. Move-command

also overrides the alternatives-piece method to retturn the set of pieces that can be

14

lloveCd at any given time. anid the alternatives-location method to return the locations

to which the selected piece can be moved. The alternatives methods are not used

in the chess interface described above, but the\, could be used in an interface that

highlights the pieces that can b- moved, and the locations where a selected piece can

be moved. No chang'- to the chess application would be needed to add this feature

to fihe user interface.

Nephew also provides a library of command classes that implement common in-

terface styles:

Command-Basic provides the behavior common to all commands Iby defining default

implementations for the methods listed above.

Input-Prompt-Mixin provides facilities to associate a set of recognizers with each com-

mand input, and to switch on the appropriate recognizers when the application

program requests input. Switching the recognizers on will allow them to receive

input events and thus decode communication concepts that set the inputs.

Hour-Glass-Mixin automatically runs the hour-glass-recognizer while an operation is

executing. This recognizer displays an hour-glass cursor and intercepts all input

events.

Confirmation-Mixin overrides the execute method. Before invoking the application

operation it switches on a recognizer to prompt the user for a confirmation to

execute the operation.

For example, in the chess program the quit-command is an instance of a command class

that includes Confirmation-Mixin so that the user is asked to confirm before exiting

the chess program. The save-Command uses the Input-Prompt-Mixin to prompt for the

file to save the state of the game.

Presenters

A presenter displays communication concepls. Nephew implements presenters as

classes, one class for each particular way of displaying the communication concepts

for each kind of object. Nephew provides presenter classes to display a variety of

generic application classes such as lists. structures and array, and also to display

commands and even presenters themselves.

15/Structuring Programs to Support Inteliigent Interfaces

In Nephew complex presentations are constructed by connecting several presenter

instances to form a tree. Presenters "ith children are called parent presenters, and

the children are called sub-presenters. For instance, in the chess example the board

is a presenter, and the pieces are sub-presenters of the board presenter.

The following are the presenter classes in Nephew's library:

Presenter-Basic provides the basic facilities to link presenters to the objects they

present, and all the hooks into the graphics package. Presenter-Basic displays

its object as a string identifying the type of object (e.g. a chess-piece). This is

useful in the initial stages of the implementation of a user interface.

Borders-Mixin provides the facilities to define the borders, background and foreground

of presenters.

Window-Mixin provides the facilities to attach a presenter to a window.

Structured-Presenter provides the facilities for a presenter to have sub-presenters.

Record-Presenter, List-Presenter are sub-classes of Structured-Presenter that can present

records and lists. They provide the methods that know how to construct and

update sub-presenters for their respective data structures.

Homogeneous-Presenter is a sub-class of Structured-Presenter for structured objects

whose components are all of the same type. The sub-classes of Homogeneous-

Presenter can use a single sub-presenter to display all the components of an ho-

mogeneous structured object, thus saving a large amount of storage. Homogeneous-

Array-Presenter and Homogeneous-List-Presenter are sub-classes of Homogeneous-

Presenter specialized to arrays and lists.

Rectangular-Alignment-Mixin provides definitions to align sub-presenters in columns

or rows.

String, Icon, Bitmap and Color-Presenter provide commonly uised presentations.

The chess program uses many of these classes. For example, the piece-presenters

are instances of Icon-Presenter, board-presenter is an instance of Homogeneous-Array-

Presenter. and it uses the Borders-Mixin to define i he borders of the board. The menu

containing the save and quit commands is presented using a List-Presenter to present

the list of save-command and quit-command, and uses the Rectangular-Alignment-Mixin

i6

to align the presentations in a column, left aligned, and with some space between the

items.

Nephew presenters, commands and recognizers are similar to Smalltalk's MVC

views and controllers [GoldbergS3]. The main difference is that the role of the con-

trollers is played by commands and recognizers in Nephew. By separating gesture

handling (recognizers) from dialogue control (commands), Nephew simplifies the de-

sign of the controllers.

Presenters, controllers and recognizers are also similar to MacApp's [Schmucker86]

views and commands. The role of commands in both systems very similar, serving

to collect the inputs for the program operations. Nephew takes the idea one step

further by using commands as an object representation of the program operations,

and allowing a command to be used anywhere where an object can be used. For

example, the commands can be displayed with a presenter.

6 Classification and Separation In Intelligent Interfaces

This section first gives a definition of intelligent interface and then shows how commu-

nication concepts and Nephew could be used to construct interfaces that are intelligent

according to the definition given below.

Intelligent Interfaces

When a program communicates with the user it has to make certain decisions, called

communication decisions, about the concepts it communicates. The program must

decide what information to communicate to the user, when to communicate it, and

how to encode it. Also, the program must decode the input from the user, and then

interpret the decoded concept.

A user interface can be called intelligent in the measure to which communication

decisions are conditioned on an analysis of the information listed below [Rissland82]:

Program model: a model of the capabilities of the program, such as the objects it

supports, and the operations it provides. Also included here is a description

of the program's user interface design choices (e.g. whether the program uses a

menu to display the operations).

17/Structuring Programs to Support Intelligent Interfaces

User model: a model of the characteristics of the user of the program, such as his or

her expertise, preferences and past history of interaction with the program.

Task model: a model of the tasks the user wants to accomplish when using the pro-

gram.

Workstation model: a model of the characteristics of the workstation such as its op-

erating system. speed, input and output devices.

Knowledge about interface design: knowledge about graphic design, wording of error

messages, interaction styles, etc.

For instance, an interface that decides whether to use a menu or a command line

interface based on an analysis of the user model (e.g. to find out how familiar a user

is with a program) is more intelligent than one that makes the decision irrespective

of the information contained in the user model.

There are two major ways in which these models can be used. The difference

comes from whether the knowledge is used only at the time the program is dcsigned,

or whether the program itself can reason with this knowledge at run time.

When tile knowledge is used only at design time, it is used to make user interface

design decisions, which are then Lardwired into the specification of the program.

Software tools that aid in incorporating intelligence into a user interface at design

time can be called designer's assistants.

When the knowledge is used at run time the program can make user interface

design decisions tailored to the specific user and specific interaction problems that

occur while the user is interacting with a program. These kind of interfaces can be

called adaptive.

Figure 2 shows how interfaces are constructed using Nephew. The interface de-

signer, represented by the box labeled reasoning component chooses presenters, com-

mands and recognizers from the building biock library, and glues them together using

Nephew.

In Nephew's current implementation, the reasoning component is a human acting

at design time rather than at run time. A designer selects hii'ding blocks from the

Nephew library, tailors them to a specific application. and defiecs the connections

between them. Given the archiltecture of Nephew, part of the reasoning component

could be replaced Iv a designer's assistant and an adaptive interface. The designer's

Is

Presenters Program model
Commands User model

Recognizers R Workstation model

Communication _

concepts

Figure 2: Constructing interfaces with Nephew.

assistant would help the human designer choose and tailor the building blocks. The

adaptive interface would be part of the Nephew run time environment, and it could

tailor and replace building blocks after reasoning about the state of the dialogue with

the user. The following subsections discuss how communication concepts and the

architecture of Nephew facilitates the automation of the reasoning component.

Revising Communication Decisions

Intelligent interfaces operate by generating or revising communication decisions. A

designer's assistant generates communication decisions at design time, by suggesting

different input techniques and different ways to display information. The human de-

signer selects from the possibilities offered by the assistant, and then iterates revising

the decisions before settling on a design. The usefulness of such an automated assis-

tant is hampered if the different designs cannot be quickly implemented and tested.

Separation allows replacing the modules that implement the different designs with-

out reprogramming, so separation facilitates testing different designs. An adaptive

interface places even more stringent requirements on separation because the design

decisions are changed at run time, and hence must be made without reprogramming.

For instance, consider the following alternative interface designs for an operation

with a single parameter.

9 The parameter gets the value of the currently selected object, and the operation

is chosen from a menu. The Macintosh interface has many examples of this

design (e.g. cut and paste).

19/Structuring Programs to Support Intelligent Interfaces

" The operation is presented as an icon next or close to the presentation of the

object that it acts upon. Clicking on the operation icon invokes the operation.

For instance, in the Macintosh interface the "close-window" operation is pre-

sented as an icon, called the close box, in the top left corner of the window to

which it applies. Each window has its own close box.

" The operation is presented as an icon and the parameter is specified by dragging

a presentation of the object into it. For example, the Macintosh Finder presents

the "delete-file" operation as a trash-can icon. Files are deleted by dragging

their presentation to the trash icon.

In Nephe a!; these interfaces are defined in terms of the set of communication con-

cepts discussed in section 3. So, the modules that implement the different interface

designs can be plugged into the functionality portion of the application without repro-

gramming. The revised communication decisions suggested by a designer's assistant

could be implemented automatically and tested immediately by the human designer.

Reasoning About Building Blocks

A problem with many tool-kits is that it is hard to find the appropriate building block

for a given situation. Classification can be used to construct a designer's assistant

to help user interface designers to find the right building block and to tailor it for a

given situation.

Communication concepts can be used to describe building blocks, providing a

powerful language for designer's assistants to index into a database of building blocks.

A query by example browsing tool such as Rabbit [Tou82] or Backbord [Yen88].

can then be used to find candidate building blocks given the specification of a few

attributes of the building block.

For iistance, suppose the drag recognizer building block was described as follows:

The dragger can be used to decode the activate communication concept..

It is appropriate for operations that, are presented as an icon.

It is appropriate when the potential parameter objects are presented as

icons.

It can Ie lsed witi operations t hat relilire at least one input.

20

Suppose the designer's problem is to design the input side of the interface for an

operation with a single parameter. The designer first specifies a query for a recognizer

to activate an operation with a single parameter. Given that many recognizers can

activate operations, the browsing tool returns multiple choices (e.g. the designs for

single parameter operations discussed above). The designer can then refine the query,
say, by specifying that both the operation and the parameters will be displayed as

icons, and narrow down the set of building blocks to find the above dragger.

Describing the building blocks in terms of the communication concepts also fa-
cilitates constructing consistent interfaces. For instance, if the designer specifies a
command icon that presents the "command active" communication concept using

reverse video, then the tool can easily detect an inconsistency if the designer specifies

another command icon that also uses reverse video to present the "correct input"
communication concept. The designer's assistant can point out the inconsistency and

suggest ways to correct it.

7 Final Remarks

The language of communication concepts described in this paper has two salient

features:

* The communication concepts specify, in abstract terms, what information a

program communicates with a user, without specifying how that information is

communicated.

o The communication concepts support the transmission of all the information

needed to implement a wide variety of graphical interfaces.

The main consequence of these two features is that communication concepts can be
used to define an application/user-interface interface, that is, the interface between

the application and user interface modules of a program. The language specifies, not

only what information must be supplied by the application module in order to supilort

the user interface, but also how this information must be encoded.

This language is good from the modularity and code reusability point of views.

The user interface can be changed without affecting the application portion of the

21/Structuring Programs to Support Intelligent Interfaces

program, and the interface building blocks can be reused because they are plug-

compatible with the application portion of the program. Such a clean architecture

is important for the construction of intelligent interfaces because it facilitates revis-

ing user interface design decisions. Also, communication concepts are concepts that

intelligent interfaces can reason about when making design decisions.

Acknowledgements I am grateful to the following people for their helpful com-

ments: Richard Cohn, Mike DeBellis, John Granacki, Brian ttarp, Phil Hayes, Richard

Lerner, Brad Myers, Robert Neches, Barbara Staudt, Joseph Sullivan, Sherman Tyler

and John Yen. I also want to thank Kim Chau Luu for her help with the figures.

References

[ArensSS] Arens, Y., Miller, L., Shapiro, S. C., and Sondheimer, N. K. 1988.

Automatic Construction of User-Interface Displays. In AAAI 88, The

Seventh National Conference on Artificial Intelligence, pat-es 808-

813.

[Encyclopae74] Encyclopaedia Britannica, Inc. 1974. Micropaedia, page 45. Volume 3,

Encyclopaedia Britannica, 15 edition.

(FoleyS2] Foley, J. and van Dam, A. 1982. Fundamentals of Interactive Com-

puter Graphics. Addison-Wesley.

[FoleySS] Foley, J., Gibbs, C., Kim, W. C., and Kovacevic, S. 1988. A

Knowledge-Based User Interface Management System. In CHF88

Conference Proceedings, pages 67-72, ACM.

[Goldberg83] Goldberg. A. and Robson, D. 1983. Smalltalk-80: The Language and

its Implernentation. Addison-\Vesley, Reading. Mass.

[GreenS61 Green. NI. 1986. A Survey of Three Dialogue Models. AC.M Tran.-

actions on GrOphics, 5(3):2-14- 275.

22

[Hayes85] Hayes, P., Szekely, P., and Lerner, R. 1985. Design Alternatives for

User Interface Management Systems Based on the Experience with

COUSIN. In CHI'85 Conference Proceedings.

[KamranS3] Kamran, A. 1983. Issues Pertaining to the Design of a User Interface

Mfanagement System, pages 43-48. Springer-Verlag.

[MoranSl] Moran, T. 1981. The command language grammar: a representation

for the user interface of interactive computer systems. International

Journal of Alan-Machine Studies, 15:3-50.

[Newman79] Newman, W. and Sproull, R. 1979. Principles of Interactive Com-

puter Graphics. McGraw-Hill.

[Olsen86] Olsen, D. R. J. 1986. MIKE: The Menu Interaction Kontrol Envi-

ronment. ACM Transactions on Graphics, 5(4):318-344.

[Rissland82] Rissland, E. 1982. Ingredients of Intelligent User Interfaces. Inter-

national Journal of Man-Mlachine Studies, 21:377-388.

[Schmucker86] Schmucker, K. J. 1986. Object-Oriented Programming for the Mac-

intosh. Hdyden Book Company.

[Smith84] Smith, R., Lafue, G., and Vestal, S. 1984. Daclarative Task Descrip-

tion as a User-Interface Structuring Mechanism. Computer, 29-38.

[Szekely88] Szekely, P. 1988. Separating the User Interface from the Functionality

of Application Programs. Ph.D. thesis CMU-CS-88-101, Carnegie-

Mellon University.

[Tanner83) Tanner, P. and Buxton, W. 1983. Some Issues in Future User Interface

Management System (UIMS) Development. IFIP TVG 5.2 W'orkshop

on User Inteface Management.

[Tou821 Tou. F. F., Williams, M., Fikes, R., Henderson, A., and Malone. T.

1982. RABBIT: An Intelligent Database Assistant. In AAAI 82, Thc

National Confircnc on Artificial lntelligcnce, pages 31-1 31S.

23/Structuring Programs to Support Intelligent Interfaces

[YenSS] Yen, J., Neches, R., and DeBellis, M. 1988. Specification by Reformu-

lation: A Paradigm for Building Integrated User Suppport Environ-

ments. In AAAI 88. The Seventh National Conference on Artificial

Intelligence, pages 814-818.

